Carbonatación Natural

Lic. Sebastián Oddone

ESPECIALISTA EN FERMENTACIONES INDUSTRIALES

Algunas cuestiones iniciales

La carbonatación puede ser natural o forzada

La carbonatación natural puede llegar a más volúmenes de CO₂. con la forzada podemos llegar a 3 volúmenes aprox. (más arriba pueden surgir inconvenientes técnicos.

Es posible tener una buenas estimación para la carbonatación natural conociendo la temperatura de fermentación, la densidad final y el nivel requerido de gasificación.

Cálculos mal realizados pueden dar lugar a "gushing" o explosiones de botellas.

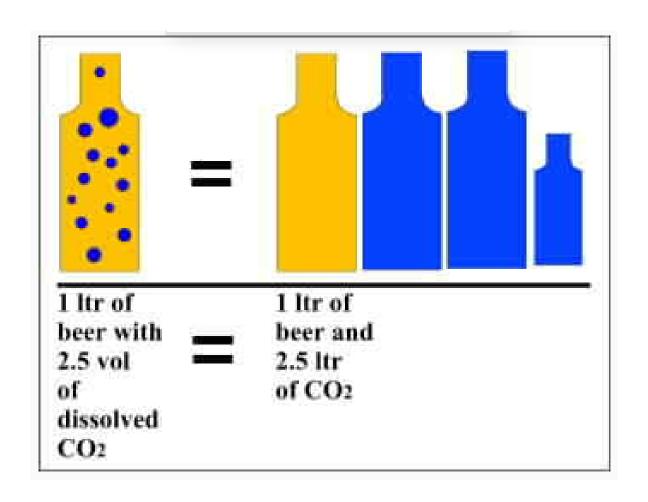
Los niveles bajos de carbonatación enfatizan los perfiles maltosos de las cervezas. Brindan un final más cremoso y suave.

Los noveles altos de carbonatación incrementan la percepción del amargor y/o la acidez de la cerveza. También favorecen la presencia del aroma.

Ventajas de la Carbonatación Natural

- ✓ Es más económica que la forzada
- ✓ Permite minimizar el contenido de oxígeno en la cerveza
- ✓ Es posible carbonatar con mayor volúmenes de CO2
- ✓ Permite el acondicionamiento en botella

Las cuatro variables


Levadura

Azúcar

Temperatura (19 a 21°C)

Tiempo (10 a 15 días)

¿Qué son los Volúmenes de CO₂?

¿Cuál es el nivel de gas deseado?

Niveles típicos de carbonatación según estilo			
Estilo de Cerveza	Volúmenes de CO ₂	Gr/litro de CO ₂	
Bitter de Barril	1,1 – 2,0	2,2 – 4,0	
Porter/Stout	1,7 – 2,3	3,4 – 4,6	
Ales Belgas	1,9 – 2,4	3,8 - 4,8	
Irish Red Ale	2,2	4,4	
Lagers Europeas, Americanas y ALEs Americanas	2,2 – 2,7	44 – 5,4	
Pilsner	2,7	5,4	
Lambicas	2,5 – 4,5	5,0 – 9,0	
Saison	3,0	6,0	
Weissbier	3,3 – 4,5	6,6 – 9,0	

¿Cuál es el nivel de gas deseado?

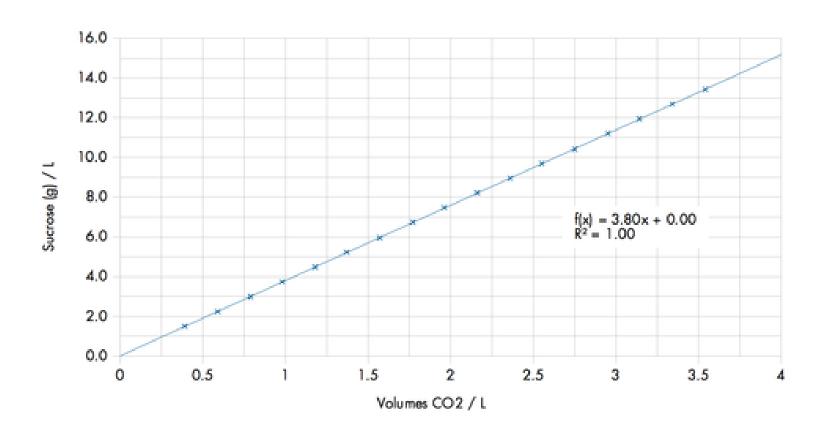
Nivel de carbonatación	Vol. CO₂
Baja	1,5-2,0
Estándar	2,4-2,7
Alta	3,0-3,5

Resistencia de las botellas (aprox.)

BOTTLE: VOLUME CHART		
Bottle type	Max. CO ₂ Volume	
12oz	3	
33cl Belgian	3.5	
500ml European	3.5	
Swing top	4	
Champagne	7	
PET	10	

¿Cuánto gas tiene la cerveza fermentada?

Temperatura (°C)	Cantidad de CO2 (grams/L)	Volúmenes de CO2
0	3.34	1.70
2	3.14	1.60
4	2.95	1.50
6	2.75	1.40
8	2.55	1.30
10	2.36	1.20
12	2.20	1.12
14	2.06	1.05
16	1.94	0.99
18	1.83	0.93
20	1.73	0.88
22	1.63	0.83


Volumenes de CO2 disuelto tras la Fermentación

¿Cuánto gas hay que agregar?

Requerido 2,4 vCO2, tiene 0,9 vCO2, faltan 1,5 vCO2

¿Cómo lograr el nivel de gas deseado?

¿Qué fuente de azúcar puedo utilizar?

Dextrosa (azúcar de maíz)

Sacarosa (azúcar de mesa)

Jarabes de azúcar (JMAF)

Miel

Jugos de Frutas

Frutas

Mosto (Krausening)

Veamos algunos ejemplos de cálculos

Dextrosa (azúcar de maíz)

La dextrosa por su naturaleza química tiene la capacidad de retener agua. En su formulación se debe asumir un contenido de agua entre el 10 y el 15% (90 – 85% de azúcar)

Por lo tanto, si quiero 6gr/litro de azúcar debo corregir por el contenido de agua:

$$\frac{6}{0.9} = 6.7 \qquad \frac{6}{0.85} = 7$$

Veamos algunos ejemplos de cálculos

Miel

La miel es un alimento que tiene en su composición promedio un 80% de azúcar.

Por lo tanto, si quiero 6gr/litro de azúcar debo corregir por la composición de la miel:

$$\frac{6}{0.8} = 7,5$$

Veamos algunos ejemplos de cálculos

JMAF

El Jarabe de Maíz de Alta Fructosa es azúcar líquida prácticamente. Por lo tanto se puede asumir un 100% de azúcar.

En este caso no debería hacer correcciones

¿Alcanza la levadura presente en la cerveza?

- En el caso de estilos y procesos convencionales (cervezas ALEs de corta maduración), alcanza en general con la levadura inicial utilizada.
- En cambio, en cervezas de muy alta densidad, o Lagers, o cervezas de prolongada maduración es conveniente utilizar alguna técnica de refuerzo:
- 1) Re-inocular con una pre-hidratación en azúcar o Mosto: en este caso se recomienda aplicar un 1/20 de la cantidad inicial buscada para la 1era fermentación. Se puede utilizar cualquier otra cepa. Si es más bien neutra mejor aún.
- 2) Utilizar el Krausen Alto (Krausening): aplicado tradicionalmente por los alemanes que siguen la ley de pureza. Viene con mosto azucarado y levadura activa.

SafAle™ F2

SafAle F-2 ha sido específicamente seleccionada para fermentación secundaria en botellas y barriles. Esta levadura asimila muy bien azúcares simples, como la glucosa, fructosa, sacarosa y maltosa. No obstante, asimila pequeñas cantidades de maltotriosa, caracterizándose por ser aromá-ticamente neutra, respetando el perfil sensorial de la cerveza base.

SafAle F-2 resiste altas concentraciones de alcohol (>10% v/v), permitiendo a los cerveceros obtener todas las propiedades requeridas en la refermentación:

- Remoción de oxígeno en tanque de guarda de cerveza.
- Contribución a la redondez y aromas de maduración.
- Carbonatación.
- Excelente adherencia al fondo de las botellas / barriles, formando una turbidez homogénea y agradable a la vista al ser resuspendida.

INGREDIENTES: Levadura (Saccharomyces cerevisiae), agente emulsionante E491

TEMPERATURA DE FERMENTACIÓN: 15-25°C

DOSIS: 2 a 7 g/hl

INSTRUCCIONES DE USO REHIDRATACIÓN:

SafAle F-2 no debe rehidratarse directamente en la cerveza.

Esparcir la levadura en un volumen mínimo de agua estéril equivalente a 10 veces su propio peso, manteniendo la temperatura a 27°C ± 3°C. Dejar descansar entre 15 y 30 minutos. Agitar suavemente.

USO:

Agregar 5 a 10 gramos de azúcar por litro de cerveza (para obtener de 2,5 a 5,0 g/l de CO2, respectivamente). Inocular la levadura rehidratada en la cerveza endulzada, que debe estar a temperatura de fermentación (20-25°C). El nivel final de carbonatación se debería alcanzar tras una o dos semanas a 20-25°C*.

El producto adquiere redondez luego de dos o tres semanas más en reposo.

* La carbonatación final a 15°C puede tomar más de 2 semanas

¿Cómo agrego el azúcar?

Botella x botella (c/dosificador):

Difícil de medir la cantidad correcta Método práctico Tiene mayor riesgo de contaminación Puede generar más espumado

¿Cómo agrego el azúcar?

Priming:

Previene mejor la contaminación

Método práctico

Difícil de homogeneizar (se puede colocar directamente en el madurador o hacer un trasiego)

¿Cómo agrego el azúcar?

Botella x botella (jeringa):

Mayor homogeneidad Tiene menor riesgo de contaminación

¿Cómo llenamos las botellas?

Embudo:

Debe llenarse contra las paredes

Conviene cuando se coloca azúcar una a una con dosificador

¿Cómo llenamos las botellas?

Varilla de llenado:

Es conveniente cuando se hace priming o se agrega con jeringa

Minimiza la oxigenación de la cerveza

Fácil de controlar volumen de llenado

Cálculo del volumen para la jeringa

Ejemplo

- ≥ 20 litros de mosto
- > 7 gr/litro de azúcar
- ➤ 140 gr de azúcar en 200 cc de agua
- > Se hace el almíbar
- ➤ El volumen final resultante es de 205cc
- ➤ Vamos a preparar 40 botellas

Resultado

$$\frac{205}{40} = 5,125cc$$

Incremento del nivel de alcohol

Si agregamos 6gr/litro de azúcar,

Resultado

Se generan 3gr/litro de alcohol

 $\frac{gramos}{10} = \frac{gramos}{100 \text{ cm}^3}$

- Dividimos por 10
- Dividimos por la densidad del alcohol

$$\frac{3 gr/l itro}{10} \equiv \frac{0.3 gramos}{100 cm^3} \equiv \frac{\frac{0.3}{0.789} cm^3}{100 cm^3} \equiv \frac{0.38 \% v/v}{100 cm^3}$$

Canal de YouTube Capacitaciones El Molino

Nuestra WEB

www.capacitacioneselmolino.com

Instagram

Instagram y Facebook @capacitacioneselmolino

Consultá por nuestra MEMBRESÍA MENSUAL